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« Description of the acceleration schemes (neutrino factory)
« Recent work on the RLA

 Tracking in linear non-scaling FFAGs

« Electron model for linear non-scaling FFAG (EMMA)

« Analysis of the NuFactd FFAG scheme

« Analysis of an isochronous FFAG

« New bunch train scenario
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« The Study lla scheme
o Isochronous FFAGS
« Scaling FFAGs
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The Study lla Scheme /T‘-’ (

“on col®

o Linac from cooling to 1.5 GeV

« Dogbone RLA from 1.5 GeV to 5 GeV

 Linear non-scaling FFAG from 5 GeV to 10 GeV
0 Save money by more efficient use of the RF

 Linear non-scaling FFAG from 10 GeV to 20 GeV
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The Study lla Scheme
Dogbone RLA
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1.5-5 GeV Dogbone RLA
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The Study lla Scheme
5-10 GeV FFAG AN

10-20 GeV FFAG

5-10 GeV FFAG \
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1.5-5 GeV Dogbone RLA
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10-20 GeV FFAG ARG

10-20 GeV FFAG
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The Study lla Scheme
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Linacto 1.5 GeV

10-20 GeV FFAG
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Isochronous FFAGSs Yo oo

« Replace the FFAGs in the NFMCC scheme with “isochronous
FFAGS”

 Linear non-scaling FFAGs have a time of flight that depends on
energy
0 Difficult to keep bunch synchronized with the RF
0 Puts a lower limit on the required voltage

« Use nonlinear magnets to make the FFAG isochronous over the
entire energy range
0 May limit dynamic aperture
0 Will analyze a bit later

« Can also use two types of cells: longer cells with RF, shorter cells
without

0 Can reduce machine cost
0 Need to match between
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Isochronous FFAGS with Insertions
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« The NuFactJ scheme

« Scaling FFAGs only for entire neutrino factory, from capture to (not
Including) storage ring

4 stages, 0.3-1 GeV/¢, 1-3 GeV/e, 3-10 GeV/e, 10-20 GeV/e
o Idea: this may be inexpensive
0 Avoids the entire front end

« Scaling FFAGs can have large dynamic aperture
0 Arbitrarily large energy acceptance
0 NO resonance crossing issues
0o Wil it be large enough? Nonlinearities.
« Use low-frequency RF to accelerate
0 Lots of voltage needed at low frequency

« Will analyze later
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Scaling FFAGs

FFAGs on Tokal Campus
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Dogbone RLA
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o Full linear design exists

0 Needs to be converted into real terms, costed
0 Compare cost per GeV to FFAGs

« Misalignment and gradient error sensitivity studied
0 Orbit distortion manageable with 1 mm orbit errors

0 Quad field tolerances 0.2%

« Next steps

0 Add sextupoles to get chromatics right
0 Look at beam with finite energy spread
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Tracking in Linear Non-Scaling FFAGs
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« 6-D tracking studies have begun on linear non-scaling FFAGS
(Machida, Méot, Lemeut). Most codes can’t handle FFAGs well.

« With real acceleration, particles with high transverse amplitude

aren’t accelerated properly

0 Not a problem with uniform acceleration (what we tested before)

0 Low transverse amplitudes are fine
« Cause: time of flight depends on amplitude

0 Palmer discovered this long ago, but we didn’t realize the

conseguences
0 Can predict the dependence:
T, dv
dJ dE

0 No effect in scaling FFAGS!
15
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Time of Flight Dependence on Amplitude s % >
Different Transverse Amplitudes
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Time of Flight Dependence on Amplitude < }(’[

Time of Flight Curves ”T:'
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Tracking in Linear Non-Scaling FFAGs
Distribution Choice
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 Effect creates problems for simultaneously large transverse and

longitudinal amplitudes
» Choice of distribution matters a lot
0 Ellipsoidal:
2Jy  2Jy  2J
A, A, A

<1

0 If amplitudes are large in one plane, they are small in the other

0 Tensor product

20

2Jy
Ay A,

<1

o Amplitudes can be simultaneously high in all planes

0 Equivalent problems to ellipsoid with 3x larger acceptance
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Tracking in Linear Non-Scaling FFAGs il YA
Tracking with Different Distributions Y A
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Tracking in Linear Non-Scaling FFAGs '\,
Time of Flight Dependence on Amplitude

X
Uop cons®

« Different amplitudes follow different channels in longitudinal phase
space

0 Channels may not overlap

« How will we address the problem?

0 Adjust machine parameters to open up the channel more
0 More voltage
0 Longer ring
0 Higher harmonic RF
0 Costs money

0 Adjust phase space more carefully to optimize what we have

0 Current model assumes that time of flight is perfectly parabolic
0 Find best area of overlap (right now, using optimum for low
amplitude)
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Tracking in Linear Non-Scaling FFAGs s }(z
Longitudinal Phase Space Channel Q'C
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FFAG Electron Model
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 Linear non-scaling FFAGs have never been built

« Create an inexpensive model of a linear-nonscaling FFAG

o In the last year we have

0 Refined the experimental goals of the machine
0 Settled on lattice specifications

0 Begun to look at hardware
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FFAG Electron Model

Fixed Frequency Longitudinal Dynamics @Jak
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« Accelerate up an S-shaped channel in phase space
0 Channel shape governed by time of flight dependence on

energy

0 Time of flight dependence governed by transverse lattice

« Insure channel is wide enough to give acceptable distortion

 Varying machine parameters does two things

0 Pinches off the phase space channel, or makes it larger
0 Changes how energy and RF phase vary as you accelerate
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FFAG Electron Model

Longitudinal Phase Space
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FFAG Electron Model
Time of Flight
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Longitudinal Dynamics: Things to Study
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« As we vary machine parameters, do we get the expected
behavior?

0 Do we lose transmission at the expected parameter values?
0 Is the emittance growth what we predict?

« The horizontal lattice determines the time of flight behavior

0 Do we get the predicted time-of-flight behavior as a function of
energy?

« Effect of errors on transmission, longitudinal emittance growth

0 Phase errors Iin cavities
0 Lattice effors (as they affect time of flight)
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FFAG Electron Model < /’[
Resonance Crossing @TS

« During acceleration, we cross large numbers of (hopefully)
weakly-driven “resonances”

« Result is emittance growth and/or beam loss

o In fixed-frequency acceleration: rate of resonance crossing
depends on energy

« Resonance crossing will depend on tune/energy profile
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Resonance Crossing: Things to Study Te
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« As we vary the resonance crossing rate (overall acceleration rate),
do we get expected growth rates/losses?

« As we vary the tune range, how does the emittance growth vary?
Check predictions.

« As we vary b, which changes where the high and low acceleration
rates are, how does the emittance growth change?

o Introduce magnet displacements and field errors; how does this
affect the emittance growth?

o Introduce low, variable-frequency RF system to study
0 Uniform rate of crossing resonances

0 Slower resonance crossing rates than we can have with the
high-frequency system.
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FFAG Electron Model L9
Simulation AN

« Much of this program is a verification of results obtained through
simulation

0 But we want to test how varying the parameters of a muon
FFAG will affect its performance

0 We of course want to address the issue of whether it works at
all!
« We must be able to simulate the full system
0 Full 6-D
0 Magnet end fields
0 Arbitrary magnet displacements
0 Correct handling of RF timing

« Real machines will have these same simulation requirements

e If results do not match simulation, our task should be to determine
what went wrong in the simulation

BROOKHFAUEN
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FFAG Electron Model s
Hardware Requirements
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o To test parameter space of longitudinal dynamics, for fixed
transverse lattice

1 Vary cavity frequency (part in 10%; probably straightforward, but
significant hardware required)

0 Vary cavity voltage (factor of 4 to 6: easy, since low voltages)
0 Vary individual cavity phases (with relatively high precision)

« To see the effect of the transverse lattice on the longitudinal
dynamics (i.e., vary the parabola)

0 Independent variability of dipole and quadrupole components of
the magnets

0 Without both components variable, the tune profile cannot be
decoupled from the parabola centering

BROOKHFRUVEN
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FFAG Electron Model
Hardware Requirements (cont.)
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« Resonace crossing
0 Requirements as above
0 Ability to adjust magnet positions to study displacement errors
0 Individual control of magnet strengths to study gradient errors

« Without independent control of quadrupole and dipole

0 Difficult to look independently at certain effects (tune profile,
parabola shape, etc.). Effects are coupled together.

o Still will be doing simulation verification
0 Longitudinal RF parameters can still be explored thoroughly
0 Can still look at resonance crossing rate

« Lower-frequency RF system for second stage
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Magnet Designs
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« Gradient dipole

0 Can’t independently vary dipole and quadrupole

« Shifted quadruoples

0 Vary dipole by moving the magnets

0 For D, use mirror plate

0 Potential problem: large physical aperture (end fields)
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33 NATIONAL LABORATORY



Gradient Dipole Design QT’CG
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FFAG Electron Model
Diagnostics

« To measure these effects, need extensive diagnostics

 Longitudinal

0 Can do initial experiments (e.g., look for point of pinch-off)
simply by having energy distribution at extraction or in ring

0 To get longitudinal emittance growth, need more detailed

diagnostics
« Resonance crossing

%MJ,
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0 Need relatively accurate transverse emittance measurement

o Ability to extract is probably important for detailed measurements

BROOKHFRUVEN
NATIONAL LABORATORY



§\N0 Fag,
e o,

FFAG Electron Model “\),
Determining Parameters
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« Rate of resonance crossing is (roughly) the product of cells and
turns (cell-turns)

0 Muon acceleration: between 500 and 1500 cell-turns

0 More cell-turns requires a larger machine, so try for the low end:
500 cell-turns

« Match other parameters of muon machines
0 Factor of 2 in energy
0 Low-energy tunes: v, = 0.39, v, = 0.27
 Pole tip field limitation of magnets

e a = qV/(wATAFE): choose 1/12, to have reasonably-sized channel
0 Can make larger if we so desire: voltages are small

« Doublet cells

« Want similar angles and fraction of aperture filled: about 3 mm
normalized emittance
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FFAG Electron Model ¥ J’i
Resulting Parameters /T- e

« RF frequency choice: with 0.2 T pole tips, 1.3 GHz requires 42
cells, 3 GHz requires 60; choose 1.3 GHz

« Pole tip field: to get 500 cell-turns

Pole Tip Field (T) 0.1 0.2 0.3
Cells 418 42 42
Circumference (m) 23.1 159 14.1
Magnet Aspect Ratio (L/A)| 2.1 1.3 0.9

0 At 0.1 T, ring is too long
0 At 0.3 T, magnet aspect ratio is bad: ends contribute too much
0 Probably prefer 0.2 T or slightly below for balance

 To achieve a = 1/4, need 115 kV per cavity (every other cell has
cavity), gradient 1 MV/m: EASY!

0 Issue: too much stored energy extracted if high current, but
need high current for diagnostics

38
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NuFactJ Parameters

 Need a description of the field in the FFAG !

« NuFactJ report: description based on arcs of
sector magnets, run in SAD

- Need to convert to
B(r,0) = Bo(6)(r/ro)"
Bp(0) piecewise constant

« Geometry determined, only specify fields

« For some lattices, no reasonable guess
WOrks

BROOKHFRUEN
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My Versions of NuFactJ Lattices /ZT’/(
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o Try to fit the tunes, assuming those were chosen carefully
« Can’t do this by just varying fields: degeneracy due to scaling
« Vary S5r, Bp, keeping (g fixed
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My Versions of NuFactJ Lattices
Magnet Parameters and Cost
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« Machine costs are huge (non-scaling FFAGs: < 100 PB each

stage)
« Magnet apertures are large
« Fields are very high

« Note: no cavities in cost!
0 RF systems used

0 0.75 MV/m average over ring, air gap, 5-10 MHz
0 First ring may be variable frequency
0 New type of magnetic alloy core
0 All this needs more careful specification, R&D, costing

0 RF cost will be a significant additional cost

41
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My Versions of NuFactJ Lattices < }(’(
Magnet Parameters and Cost TC
Lattice number 1 2 3 4 5 6
Cells 32 16 64 32 64 120
Average radius (m) 21 10 80 30 90 200
L (m) 1.125 1.088 2.111 1.640 2.225 3.257
rr (cm) 58.3 75.0 541 59.7 529 45.0
rp (cm) -356.5 -51.6 -329 -37.3 -34.0 -41.1
Bp (T) 3.442 4.355 3.292 6.282 9.493 6.567
Lp (m) 0.345 0.288 0.696 0.482 0.770 0.766
rp (cm) 52.2 67.2 481 521 474 @ 412
rp (cm) -40.6 -60.5 -40.4 -45.7 -41.4  -485
Bp (T) -3.450 -4.368 -3.387 -6.316 -9.301 -10.783
Cost (PB) 281 355 396 527 1153 1410

42
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« These designs were just supposed to by “typical”
« Constrained to fit inside 50 GeV proton ring

« Nobody did anything beyond the SAD model

« RF systems are all R&D projects

43

BROOKHFRUEN
NATIONAL LABORATORY



FFAGs on Tokal Campus
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« Work was done on improving the high energy (10-20 GeV/c)
FFAG lattice

0 FODO lattice

1 Two versions

0 Same number of cells, higher field index, smaller ring
0 Larger ring, more cells even higher field index

o | ran the lattices based on a hard edge model

« Cost reduced significantly from NuFactJ design
0 Apertures and fields both much lower
0 Still high
0 Cost can be improved by increasing cells
0 Need to fold decays in as usual
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Parameters from 2002 LBNL FFAG Workshop
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Cells 180
Field index 670
Reference radius (m) 200
Ends (m) 0.30
D angle (deg) 0.438
D length (m) 0.93
D field (T) 5.795
F angle (deg) 0.562
F length (m) 1.36
F field (T) -3.636
Drift length (m) 2.35

o0 Cells 180
120 Ly (m) 1.362
0.20 rg (cm) 20.4
063 rr (Ccm) 1.8
0'92 Bp (T) 7.664
7 7.38 Lp (m) 0.928
'O g7 rp (cm) 17.8
1'42 xp (cm) -10.9
2 8'57 Bp (T) -7.282
'1 97 Cost (PB) 284

46
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New Lattices, not Analyzed as Yet
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« There is a 10-20 GeV doublet scaling lattice (early 2003)

0 Expect cost improvement
0 Still waiting on specs for this

« Lowest energy lattice corrected to normal conducting

0 Need to work out costing for that

« New proposal by Mori: 10-20 GeV singlet spiral sector
0 Normal conducting, 100 m radius, 50 cm orbit excursion

0 Passive extraction: orbit jump

48
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Next Steps

N0
QJ\)\(\T\ 306
< EE Z

X
Uop cons®

« Need to work out details of a working scheme for all stages

0 Analyze all the schemes | currently have

0 Lattices other than first and last probably need to be defined
0 Optimized to some extent for cost

0 Need to work out details RF systems

« Need some costing information
0 Normal-conducting scheme at low energy

0 All RF systems

« Start to do more complete simulations
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« Avoid time of flight problems: act like a linac, make machine
Isochronous

« Two stages: 3.2-8, 8—-20 GeV

o Field description

0 Original description based on constructing multiple linear
lattices, connecting appropriately

0 Resulting field is nonlinear

0 | fit fields using cubic spline

0 Good fit
0 No excess oscillations
0 Extrapolates well

0 Note highly nonlinear fields
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Field Fits for Isochronous FFAG “Uon oo
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Isochronous FFAG: Analysis Z&l
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« Time of flight variation is exceptionally small
o Factor of 10 below natural value

« In my computation, tunes go unstable at high energy
0 Possible cause: Rees uses second-order edge effect which |
don'’t
« Tracking results (Méot)
0 Beam loss at high energy end

0 Appears to come from hitting a resonance
0 Note it occurs just where | say the lattice goes unstable

0 Highly nonlinear fields at high energy could also be driving it
Into the resonance
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Time of Flight in Isochronous FFAG
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Isochronous FFAG %T'}(’;
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Evolution in Tune Space Q'C
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Observations, Recommendations AV
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« Machine is very fussy:

0 Tiny changes in lattice (0.1% change in lengths) have
substantial effect on time of flight

0 Small end effects give drastic change Iin tunes

« Probably related to very nonlinear fields, especially at high energy

0 Could possibly relax this: certainly room in time of flight

0 Amplitude dependence of time of flight will give big
contribution to TOF anyhow

0 Could consider reducing energy range

 Notice “wiggles” in time of flight

0 More automated design method would take this out
0 May also improve perfomance
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Isochronous FFAG
Tasks By o

« Next, try to do some costing
0 Since lattice unstable at high energy, will have to make guess
for beam sizes there.
o Still want to add insertions
0 Short cells in arcs, longer cells in straights to fit RF
0 May reduce cost
0 Matching tricky
0 Get lattice without insertions working first
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New Bunch Train Scheme AN

A solid target would like to see as few particles as possible
« Fewer particles per bunch in the proton driver makes things easier
« Acceleration can’t run with too high of a rep rate

0 Cavities throw away unused stored energy
0 Leads to high average power

o Solution: use sub-trains

0 There is a time period for the proton driver to accelerate several
bunches: Tj

0 The bunches hit the target, separated by a time 7T}

0 T4 much less than the (superconducting) cavity fill time
0 Avoids increase in average power
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New Bunch Train Scheme ¢ & g
Acceleration Requirements

X
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« Acceleration: must replenish the stored energy in the cavities
before the next bunch comes

0 5 bunch trains, 4 MW proton driver, 7o = 1/50 Hz, existing
cavities in 10-20 GeV FFAG:

0Qr = 10°, 1 MW limit per cavity cell, allows T = 45 us
0 At existing power levels (0.5 MW per cavity cell), requires
Ty =135us
0 Average power required far from being proportional to number
of trains
« Beam loading reduced drastically

0 Certainly needed to be addressed: different bunches in train
had different energies

0 This is not the only solution
« Storage ring a challenge
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Conclusions By oo

« We have an RLA lattice up to 5 GeV, and analysis is proceeding.
« We are trying to compare different FFAG systems

0 Linear non-scaling FFAGs are having problems with large
ampliutde particles. Know how to address, additional costs.

0 Scaling FFAGs look costly, but optimization seems to be helping
that. RF may be an issue.

0 Isochronous FFAGS have serious dynamic aperture problems,
but more work may address this.

« We have and are continuing to develop a good experimental plan
and design for a model to study linear non-scaling FFAGs

« \We have a new idea for a scheme for bunch trains, which is a nice
way to address the beam loading issue in acceleration.

BROOKHFRUVEN
63 NATIONAL LABORATORY



